Лекция 3

Тема: «Основы сопротивления материалов. Основные понятия и определения. Метод сечений. Виды деформаций. Понятие напряжения».

Вопрос 1. Основные понятия и определения.

Все элементы сооружений или машин должны работать без угрозы поломки или опасного изменения сечений и формы под действием внешних сил. Размеры этих элементов в большинстве случаев определяет расчет на прочность. Элементы конструкции должны быть не только прочными, но и достаточно жесткими и устойчивыми.

Под *прочностью* понимают способность конструкции выдерживать не разрушаясь действие внешней нагрузки.

Под *жесткостью* понимают способность элементов конструкции сохранять свой первоначальные размеры и форму под действием внешней нагрузки.

Под *устойчивостью* понимают способность конструкции и ее элементов сохранять первоначальную форму равновесия под действием внешней нагрузки.

Вопрос 2. Метод сечений.

Внешние силы, девствующие на тело, вызывают в нем дополнительные внутренние силы, стремящиеся противодействовать деформации. Обнаружить возникающие в нагруженном теле внутренние силы можно, применив метод сечений.

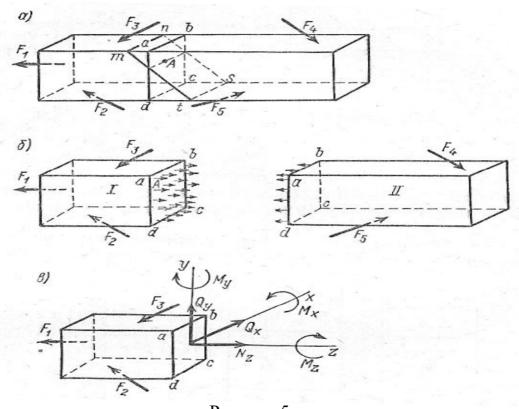


Рисунок 5

Для определения внутренних силовых факторов необходимо руководствоваться следующей последовательностью действий:

- 1. Мысленно провести сечение в интересующей нас точке конструкции или стержня (рисунок 5, a).
- 2. Отбросить одну из отсеченных частей (рисунок $5, \delta$).
- 3. Заменить действие отброшенной части внутренними усилиями (рисунок 5, θ).
- 4. Составить уравнения равновесия для оставленной части и определить из них значения и направления внутренних силовых факторов.

При действии пространственной системы сил из уравнения равновесия можно найти возникающие в поперечном сечении три составляющие силы N_z , Q_x и Q_y (составляющие главного вектора внутренних сил), направленные по координатным осям, и три составляющие момента M_x , M_y , M_z (составляющие главного момента внутренних сил). Указанные силы и моменты, являющиеся внутренними силовыми факторами, соответственно, называются: N_z - продольная сила; Q_z и Q_y -поперечные силы; M_x , M_y и - изгибающие моменты, M_z - крутящий момент.

Вопрос 3. Виды деформаций.

При *осевом растияжении и сжатии* внутренние силы в поперечном сечении могут быть заменены одной силой, направленной вдоль оси стержня - продольной силой N (индекс z, как правило, будем опускать). В случае, если сила направлена к отброшенной части наружу, имеет место растяжение. Наоборот, если она направлена от отброшенной части внутрь, имеет место сжатие.

 $C\partial \mathit{виг}$ возникает в том случае, когда в поперечном сечении стержня внутренние силы приводятся к одной силе, расположенной в плоскости сечения, - к поперечной силе Q.

При *кручении* возникает один внутренний силовой фактор - крутящий $_{\rm MOMeHT}$ $M_{\,z}=M_{\,k}$

Если в сечении возникает только изгибающий момент M_x или M_y , имеет место *чистый изгиб*. Если же кроме изгибающего момента в сечении стержня возникает еще поперечная сила, то изгиб называют поперечным. Случаи действия в поперечных сечениях стержня одновременно нескольких внутренних силовых факторов относят к сложным видам деформированного состояния.

Вопрос 3. Понятие напряжения

Напряжение представляет собой отношение внутренней силы к некоторой площади, оно измеряется в единицах силы, отнесённых к единице площади.

Составляющую напряжения по нормали называют *нормальным* напряжением в данной точке сечения и обозначают греческой буквой σ (сигма); составляющую по касательной называют касательным напряжением и обозначают греческой буквой τ (тау).

$$\sigma = N/A \tag{2}$$

$$\tau = Q/A \tag{3}$$

где A — площадь поперечного сечения.